If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4.9t^2+330t-3069=0
a = 4.9; b = 330; c = -3069;
Δ = b2-4ac
Δ = 3302-4·4.9·(-3069)
Δ = 169052.4
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(330)-\sqrt{169052.4}}{2*4.9}=\frac{-330-\sqrt{169052.4}}{9.8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(330)+\sqrt{169052.4}}{2*4.9}=\frac{-330+\sqrt{169052.4}}{9.8} $
| j-317=151 | | x^2+11x+61=-4x+5x | | 57.98+.12x=43.98+.14x | | j/26=30 | | 2.1(x+5)=49.1 | | -7c=-252 | | 15s-2=-32 | | 15s-2=32 | | -3-|z|=9;z=5 | | (64x^2-48x+9)=0 | | X=3x+35 | | r/34=5 | | 262=q+-661 | | 19=k/16 | | 4x+6=1x-8 | | y/4=4/6 | | -7c=266 | | 15s-2=-37 | | j+761=496 | | 2(p−30)=300-p | | u+76=399 | | 19-8y-2y=59 | | 6,000-25p-6,000=4,000-6,000 | | 84=10c-6 | | 38=7d-5d+14 | | 2=7(x+4(+9x | | -29=-4(z+9)-13 | | 5x13/4=15 | | 276=13d | | -10x-x=11 | | 3x-5+x+2=360 | | 40=-4(a-1)+12 |